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5.1 Introduction
Online social networks (OSNs) are becoming a bridge that con- nects our physical
daily life with the online world. For example, as of July 2014, Facebook has 1.3 bil-
lion users, which makes Facebook the second biggest “country” in the world. Twitter
has 0.65 billion users, who “tweet” 1 billion times every five days. These connections
produce a huge volume of data, including not only the content of their communica-
tions, but also user behavioral logs. The popularity of the social web and the avail-
ability of social data offer us opportunities to study interaction patterns among users,
and to understand the generative mechanisms of different networks, which were pre-
viously difficult to explore, due to the unavailability of data. A better understanding
of user behavior and underlying network patterns could enable an OSN provider to
attract and keep more users, and thus increase its profits.

In social networks, group formation – the process by which people come to-
gether, seek new friends, and develop communities – is a central research issue in
the social sciences. Examples of interesting groups include political movements and
professional organizations [1].

A triad is a group of three people. It is one of the simplest human groups. Roughly
speaking, there are two types of triads: closed triads and open triads. In a closed triad,
for any two persons in the triad, there is a relationship between them. In an open
triad, there are only two relationships, which means that two of the three people are
not connected with each other.

One interesting question is how a closed triad develops from an open triad. The
problem is referred to as the triadic closure process. It is a fundamental mechanism in
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the formation and evolution of dynamic networks [5]. Understanding the mechanism
of triadic closure can help in predicting the development of ties within a network, in
showing the progression of connectivity, and in gaining insight into decision-making
behavior in global organizations [8, 19].

The triadic closure process has been studied in many fields. Sociologists first used
the triadic closure process to study human friendship choices – i.e., whether people
may choose new acquaintances who are the friends of friends [13] – and found that
friends of friends tend to become friends themselves [13, 39]. In computer science,
empirical studies have shown that triads tend to aggregate, creating interest groups
of widely varying size, but of small diameter. For example, these tightly knit groups
indicated a common topic for hyperlinks [9] on the World Wide Web. Literature [10,
19, 34, 44] proposed network generative models based on triadic closure principles.
Milo et al. [27] [28] defined the recurring significant patterns of interconnections as
“network motifs” and emphasized their importance. But these studies focused only
on uses of the triadic closure process, without clarifying the underlying principles of
triadic closure.

Romero et al. [32] studied the problem of triadic closure process and developed
a methodology based on preferential attachment, for studying how directed ”feed-
forward” triadic closure occurs. Moreover, Lou et al. [26] investigated how a re-
ciprocal link is developed from a parasocial relationship and how the relationships
develop into triadic closure in a Twitter dataset. However, these studies only exam-
ined some special cases of the triadic closure process. Many challenges are still open
and require further methodological developments. First, how do user demographics,
network characteristics, and social properties influence the formation of triadic clo-
sure? Moreover, how can we design a unified model for predicting the formation of
triadic closure? In particular, how can we quantify correlation (similarity) between
triads?

In this paper, employing a dataset from a large microblogging network, Weibo1,
as the basis of our study, we examine patterns in triadic closure process in order
to better understand factors that trigger the formation of groups among people. Our
contributions are multifold:

� We first investigate the triadic closure patterns in the microblogging network
from three aspects: user demographics, network characteristics, and social
perspectives. We find some interesting phenomena; for example, men are
more willing to form triadic closures than women; celebrities are more likely
to form triadic closures (with a probability 421× as high) than ordinary users.
Furthermore, we find that interactions like retweeting play an important role
in the establishment of friendship and in triadic closure formation.

� Based on our observations, we tackle the issue of triadic closure prediction.
We present a probabilistic triad factor-graph model (TriadFG) combined with
different kernel functions, which quantify the similarity between triads to
predict triadic closure. Compared with alternative methods based on SVM

1Weibo.com, the most popular microblogging service in China, with more than 560 million users.
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and Logistic Regression, the presented model achieves significant improve-
ment (+7.43%, p� 0.01) in triadic closure prediction.

� We compare the observations obtained from the Weibo dataset with those
from the Twitter dataset. Interestingly, although there are common patterns
– e.g., “the rich get richer” – underlying the dynamics of the two networks,
some distinct patterns (and corresponding users’ motivations) exist, poten-
tially reflecting cultural differences of behaviors between Weibo and Twitter
users.

� One straightforward application of our findings is friend recommendation.
We apply our proposed triadic closure prediction model to the Weibo dataset
to evaluate the effectiveness of friend recommendation. The online A/B test
demonstrates that our method can achieve an advantage of +10% over the ex-
isting recommendation algorithm. Other potential applications include group
formation [1, 32], social search, and user behavior modeling.

5.2 Problem Definition
Let G = (V,E) denote a static network, where V = {v1, · · · ,v|V |} is a set of users
and E ⊂ V ×V is a set of relationships connecting those users. Notation eviv j ∈ E
(or simply ei j) denotes there is a relationship between users vi and v j. The network
evolves over time. Let us denote the network at time t as Gt . To begin with, we give
the definitions of closed triad and open triad in a static social network based on
”following” relationships.

Definition 5.1 [Closed Triad] For three users ∆ = (A,B,C), if there is relationship
between any two users – i.e., eAB,eBC,eAC ∈ E – then we say that ∆ is a closed triad.

Definition 5.2 [Open Triad] For three users ∆ = {A,B,C}, if we have only two
relationships among them – e.g., eAB,eBC ∈ E ∧eAC /∈ E – then we call the triad ∆ an
open triad.

The triads are formed in a dynamic process. We use function t(eAB)→ 1,2, · · ·
to define the timestamp at which the relationship eAB was formed between A and B.
For simplicity, we use t to denote the timestamp. In this paper, we try to understand
how an open triad becomes a closed triad. The problem exists in both directed and
undirected networks. For example, in a co-author network at time t, if B coauthored
with A and C respectively, but A and C did not coauthor, we say (A,B,C) is an open
triad. If later, A and C also have a coauthorship, we say A, B, and C form a closed
triad. In directed networks, the problem becomes more complicated. In some sense,
the problem in undirected networks can be considered a special case of the problem
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Figure 5.1: Open Triads and Closed Triads. The number below is the index of each
triad. Triad 0 – Triad 5 are open triads and Triad 6 – Triad 12 are closed triads. A,
B and C represent users.

Table 5.1: How open triad forms triadic closure.

Open A→C−−−→Close Open A←C−−−→Close Open A↔C−−−→Close

0 A→C−−−→6 0 A←C−−−→6 0 A↔C−−−→10
1 A→C−−−→6 1 A←C−−−→7 1 A↔C−−−→9
2 A→C−−−→8 2 A←C−−−→9 2 A↔C−−−→11
3 A→C−−−→6 3 A←C−−−→6 3 A↔C−−−→8
4 A→C−−−→9 4 A←C−−−→10 4 A↔C−−−→11
5 A→C−−−→11 5 A←C−−−→11 5 A↔C−−−→12

in directed networks. In this paper we focus on directed networks like Twitter (i.e.,
follower networks) and Weibo (Chinese Twitter).

Figure 5.1 shows all the possible examples of open and closed triads in a directed
network. Table 5.1 shows how these open triads become closed triads when a fol-
lowing action happens between A and C. For each entry in the table, left and right
numbers indicate the index of triads in Figure 5.1. The expression above the arrow
indicates the action that a new link between A and C is created. For example, 0 A→C−−−→
6 means if at time t′ A follows C, then open triad 0 becomes an isomorphous of closed
triad 6.

The situation becomes more complex if we further consider the time when each
relationship was formed in the (open/closed) triads. To simplify the following expla-
nation, and without loss of generality, we assume that in an open triad ∆ = (A,B,C),
the relationship between B and C was established (at time t2) after the establishment
(at time t1) of a relationship between A and B – i.e., t2 > t1. Given this, our goal is to
predict whether an open triad will become a closed triad at time t3(t3 > t2). Formally,
we have the following problem definition.

Problem 1 Triadic Closure Prediction. Given a network Gt = (V,E) at time t and
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historical information regarding all existing relationships. To every candidate open
triad we associate a hidden variable yt . Our goal is to use the historical information
to train a function f , so that we can predict whether an open triad in Gt will become
a closed triad (yt = 1) at some time t′(t′ > t) or not (yt = 0) – i.e.,

f : ({Gα ,Y α}α=1,··· ,t)→ Y t′ ,

where Y t = {yt
i} denotes the set of all values of the hidden variables at time t.

We also study how interaction between users can help the formation of triadic
closure. We consider retweeting behavior in a microblogging network. In particular,
for an open triad (A,B,C), if retweeting happens both between A and B, and B and
C, suppose the action between B and C happens after the action between A and B
(which is called candidate relationship-interaction open triad (R-I open triad)), will
this retweeting help A and C to build a relationship?

Please note that the interaction can be in different forms; for example, the above-
mentioned retweeting; “mention” (“@” in Twitter or Weibo); or “reply.” To simplify
the analysis, we focus on retweeting.

We could extend Problem 1 as follows: Given a network Gt = (V,E) at time t.
To every candidate R-I open triad, we associate a hidden variable yt

RI . Our goal is to
train a function f , so that we can predict whether an open triad in Gt will become a
closed triad at time t′(t′ > t) – i.e.,

f : ({Gα ,Y α
RI}α=1,··· ,t)→ Y t′

RI ,

where Y t
RI denotes all values of the hidden variables at time t.

5.3 Data and Observation
5.3.1 Data Collection
One objective of the study is to reveal the fundamental factors that influence tri-
adic closure formation in social networks. We use Weibo data as the basis for our
study. Triadic closure process is the formation of a directed triad (also referred to
as directed closure process [26, 32]). To obtain the dynamic information, we crawl a
network with dynamic updates from Weibo. The dataset was crawled in the follow-
ing ways. To begin with, 100 random users were selected; then their followees and
followees’ followees were collected as seed users. The crawling process produced in
total 1,776,950 users and 308,489,739 following links among them, with an aver-
age of 200 out-degree per user, 317,555 new links and 745,587 newly formed closed
triads per day. We also crawled the profiles of all users, which contains name, gen-
der, location, verified status, and posted microblogs. Finally, the resultant dynamic
networks span a period from September 29th, 2012 to October 29th, 2012. Table 5.2
gives statistics of the dataset.

We construct a network based on the following relationships, which is different
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Table 5.2: Data statistics of the Weibo dataset.
Item Number

#Users 1,776,950
#Following-relationships 308,489,739

#Original-microblogs 300,000
#Retweets 23,755,810

#New links per day(average) 317,555
#New open triads per day(average) 6,203,842,388

#New closed triads per day(average) 745,587

from a co-author network or friendship network. The former is a directed network,
while the latter is an undirected network. The main difference between the two is the
directed nature of a Weibo relationship, which is like a Twitter relationship. In a co-
author network or a message network (MSN), a link represents a mutual agreement
by users, while on Weibo a user is not obligated to reciprocate followers by following
them. Thus a path from one user to another may follow different hops, or not exist in
the reverse direction [17].

5.3.2 Observations
We view the network at the first day (September 28th, 2012, denoted as T0) as the
initial network, and then every four days2 as a timestamp (denoted as T1,T2, ...,T7).
The number of newly formed links per timestamp period is shown in Figure 5.2(a),
and the number of newly formed open triads per timestamp period is shown in Fig-
ure 5.2(b). In Figure 5.2(c), we have the cumulative distribution function of newly
formed triadic closures per day, from which we can see that within 8 days, about 60%
triadic closures are formed. In order to obtain fair and balanced observations among
the limited samples, we only consider the triadic closures generated in 8 days3 after
the open triad formed. Figure 5.2(d) shows the triadic closure probability in differ-
ent timestamp periods, from which we can see that time slightly affects the closure
probability of T1, T2, T3 and T5, (i.e., PT1 ≈ PT2 ≈ PT3 ≈ PT5 ).

Exceptions occurred in timestamp period T4 (open triads formed from Oct. 11st to
Oct. 14th and triadic closure formed from Oct. 12nd to Oct. 20th) and T6 (open triads
formed from Oct. 22nd to Oct. 25th and triadic closures formed from Oct. 23rd to

2We followed the work in [26], where they used four days as a timestamp period to study triadic closure
patterns in Twitter. In addition, we also investigated other timestamps in Section ?? to see the effects of
timestamps.

3As shown in Figure 5.2(c), about 60% open triads closed in eight days, and 80% open triads closed in
13 days. Since we only have one month’s worth of observations, eight days seems to be a better choice than
13 days: first, eight days corresponds to two timestamp periods, which is easy for calculating; second, we
can get more effective observations with eight days if we choose all samples with the same observed time
period. For example, if we select 12 days, triads in the last two timestamp periods can only be observed in
two timestamp periods, so their observations are not complete. Thus, eight days yields more observations
than 12 days.
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Figure 5.2: Overall observation. (a) Y-axis: the number of new formed links in differ-
ent timestamp periods. (b) Y-axis: the number of new formed open triads in different
timestamp periods. (c) Y-axis: Cumulative distribution function of new formed tri-
adic closures per day. (d) Y-axis: probability that open triads form triadic closures.

Oct. 31st). Coincidentally, on October 11st, the news that Mo Yan (a Chinese writer)
won a Nobel prize in literature 2012 began to spread over Weibo. In the following
days, an increasing number of people focused on this topic because Mo Yan was the
first Chinese citizen to win the Nobel prize in its 111-year history. Maybe it is partly
the reason that the closure probability in timestamp period T4 is much higher than that
in other timestamp periods. For simplicity, we only show the overall observations in
our later discussion without considering the status of each timestamp period.

Since we are interested in the major factors that contribute to triadic closure for-
mation, we first investigate the impact of different factors from three aspects: user de-
mographics, network characteristics, and social perspectives. For user demographics,
we consider location, gender, and user’s verified status. For network characteristics,
we focus on the network structure before and after the triadic closure. For social per-
spectives, we focus on the popularity of the people within the triads, people who span
”structural holes”, the gregariousness of users, and status theory. We also consider
the effects of social interaction.

5.3.2.1 User Demographics

Location From user profiles, we can obtain location information (province and city
that the user comes from). We test whether a user’s location will influence the closure
of a triad. We can see from Figure 5.3(a), if three users all come from the same
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province, the probability that the open triads will be closed is much larger (about 4
times as large) than the case for which all users are from different province. Even
if two of the three users are from the same province, the probability is obviously
greater than the NULL case, where all three users are from different provinces. If we
consider city scale, the result is more definitive; the probability of closure for three
persons from the same city is 8 times as high as that of the NULL case. Although
online social networks make distances between people smaller, location is still one
important factor that influences the formation of triadic closure.

Gender We test whether or not gender homophily affects triadic closure forma-
tion. We use three-bit binary codes to indicate the gender status of a triad – i.e.,
(XXX)X = 0 or 1, where 0 means female and 1 means male. As shown in Fig-
ure 5.3(b), we can see that if the three users are all male, triadic closures is about 6
times more likely to form than the case in which all three users are female. We also
notice that with more male users in a triad, the triad will have a higher probability
to become closed. For example, for any case (such as 001) in Figure 5.3(b), if we
replace one female user of “0” with a male user (“1”), the probability that the triad
will close will increase to 0.6-1 times higher.

Verified Status In Weibo, users can choose to verify their real status; e.g., or-
ganization, company, famous people, media, active users, etc. In some sense, a ver-
ified user could be regarded as a celebrity. Among the 1.7 million users in our sam-
ple, about 0.7 million users have verified their status. On the other hand, we have
21,622,013 closed triads, among which we have 7,608,598 closed triads with two
verified users and 8,995,533 with three verified users.

Here we check whether verified status affects triadic closure formation. We use
three-bit binary codes (XXX)(X = 0 or 1, where 0 means status is not verified,
and 1 means status is verified) to represent triad status. As shown in Figure 5.3(c),
we can see that if the middle user (i.e., user B) verified his/her status, it has nega-
tive influence on triadic closure (P(X0X) > P(X1X)), while if the other users veri-
fied their status, an open triad is more likely to become closed(P(XX1) > P(XX0),
P(1XX)> P(0XX)). For example, if users A and C verified their status, the probabil-
ity that an open triad will close is about 70 times higher than the case in which only
user B verified his/her status.

5.3.2.2 Network Characteristics

We then check the correlation between characteristics of the microblogging network
and the formation of triadic closure. In a directed network, there are 13 possible
three-node subgraphs [28] as shown in Figure 5.1 – if isomorphous subgraphs are
only counted once – among which there are 6 open triads and 7 closed triads.

Among all the open triads, open triad 3 is the most frequent, which is around
95% of all open triads. The case corresponds to the tendency of users in Weibo to
follow “super stars”, such as a famous person or news media, to get information.
Figure 5.4(a) shows the distribution of new triadic closures. We can see that triad
6 has the largest number among all the closed triads, while triad 7 has the smallest
number.
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Figure 5.4(b) shows the probability that each open triad forms triadic closure. We
can see that open triad 5 has the highest probability of becoming closed, which means
if there exist two two-way (reciprocal) relationships in an open triad, it is likely that
the triad becomes closed. Meanwhile, open triad 3 is the least likely to form triadic
closure, as there are large numbers of this kind of open triads(94.9%).

Figure 5.4(c) shows the probability for each type of open triad to change from
into each type of closed triad. We can see that a one-way relationship is much easier
to build than a two-way relationship; e.g., P5→11 > P5→12.

5.3.2.3 Social Perspectives

We turn now to several social metrics, to check how they influence triadic closure
formation. These include: popularity, structural hole, gregariousness, status, and in-
teraction.

Popularity For popularity, we test this question: If one of the three users in an
open triad is a popular user (e.g., an opinion leader, a celebrity), how likely is the
open triad to become closed? Here we employ Pagerank [31] to estimate the users’
popularity in the network, based on which the top-1%-ranked users4 are defined as
“popular” users while the rest are viewed as ordinary ones. Among all the 21,622,013
closed triads, we have 5,918,130 with any popular users, and 461,396 with three
popular users.

We also test popularity using other metrics, like in-degree, and find similar pat-
terns. We use three-bit binary codes (XXX)(X = 0 or 1) to represent a user’s status:
0 for an ordinary user and 1 for a popular user. Figure 5.5(a) shows the correlation
between users’ popularity and the proportion of triadic closures to total open triads.
We can see that if the middle user – i.e., user B – is a popular user, the probability to
close the open triads is small. We explain this phenomenon thus: User B can be a su-
per star, a politician, or an official account, which has a lot of followers and relatively
few followees, and plays a more important role than ordinary users in the network;
meanwhile ordinary users, such as A and C, follow them, but are unlikely to interact
with each other, so the probability to close the open triads is small in these cases. But
if the three users are all popular users, the probability that the open triads will close
is high.

Social Structural Hole The theory of structural holes [4] suggests that individ-
uals would benefit from filling the holes (called “structural hole spanners”) between
people or groups that are otherwise disconnected [25]. We further test whether users
who span structural holes will have different influences on the formation of closed
triads. Again, we use three-bit binary codes (XXX)(X = 0 or 1) to represent triad sta-
tus: 0 indicates an ordinary user and 1, a structural hole spanner. Figure 5.5(b) shows
the correlation between users’ social structural hole properties and the proportion of
triadic closures to total open triads. We can see from this figure that if only user B
is a structural hole spanner, the open triad is not likely to become closed. In another
case, if A or C is a structural hole spanner, A and C are more willing to connect with

4We follow the work [40] which has shown that less than 1% of Twitter users produce 50% of its
content, and [26], which also uses the top-1%-ranked users to study triadic closure in Twitter.
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each other to get more resource for themselves [30, 33, 35], so the open triads are
more likely to become closed.

Gregariousness Gregariousness represents the degree that a user is social and
enjoys being in crowds. In sociology, gregariousness is often simply represented by
out-degree; i.e., a high out-degree reflects a strong desire to be socially active and
accepted. Here we examine whether gregariousness will play some role in triadic
closure formation. Similarly, we view the top-1%-ranked out-degree users as gregar-
ious. Among all the 21,622,013 closed triads, we have 1,105,892 closed triads with
two gregarious users and 109,030 with three gregarious users.

We still use three-bit binary codes (XXX)(X = 0 or 1) to represent the triad status:
0 refers to a common user and 1 refers to a gregarious user. Figure 5.5(c) shows the
correlation between users’ gregariousness and the ratio of triadic closures to the total
open triads. We can see from this figure that if three users are all common users
(000), open triads are less likely to become closed. On the other hand, if the three
users are all gregarious (111), the open triads have a high probability of becoming
closed – almost 39 times as high as that of case 000. We also notice that with more
gregarious users in a triad, the triad will have a higher probability to become closed.
For example, for any case (such as 001) in Figure 5.5(c), if we replace one user of
“0” with a gregarious user (“1”), the probability that the triad becomes closed will
double or triple.

Transitivity Transitivity [21, 39] is an important concept that attaches many so-
cial theories to triadic structures. One social relation among three users A, B, and C,
is transitive if the relations A→ B, B→ C, and A→ C are present. Extending this
definition, a triad is said to be transitive if all the relations it contains are transitive.
For example, where A’s friends’ friends are A’s friends as well. In Weibo, it is more
likely (98.8%) for users to be connected in a transitive way.

Social Interaction We next consider the effects of interaction information upon
the triads – say, retweet information. For each user, the crawler collected the 1,000
most recent microblogs (including tweets and retweets). Since we focus on retweet
behaviors in the microblogging network, we select 300,000 popular microblog dif-
fusion episodes from the dataset. Each diffusion episode contains the original mi-
croblog and all its retweets. On average, each microblog has been retweeted about
80 times. The sampled dataset ensures that for each diffusion episode, the active
(retweet) statuses of followees in one τ-ego network5 is completed. The dataset was
previously used for studying social influence in the diffusion process [43]. With this
retweeting data, we study how triadic closure formation has been influenced by the
retweeting behaviors.

First, let us define some notations: tRBC denotes the time that a retweeting behav-
ior happens between B and C; tRAB denotes the time that a retweet happens between
A and B. If there are several actions, tRBC , tRAB denotes the time that the first action
happens; tLAC denotes the time that link AC is established. For retweeting behaviors,

5A τ-ego network means a subnetwork formed by the user’s τ-degree friends in the network; τ ≥ 1 is
a tunable integer parameter that controls the scale of the ego network.
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according to the time ordering of retweeting behaviors, we have the following four
cases:

I) User B posted one tweet, then users A and C retweeted it respectively. Given
that A retweeted it earlier than C, we have tRBC > tRAB ;

II) Assume that A has retweeted some tweets posted by B and C has retweeted
some tweets posted by B. Suppose A did it earlier than C; then we have tRBC >
tRAB ;

III) User A posted one tweet, then user B and C retweeted it respectively. Given
that B retweeted it earlier than C, we have tRBC > tRAB ;

IV) Assume that B has retweeted some tweets posted by A and C has retweeted
some tweets posted by B. Suppose A did it earlier than C; then we have tRBC >
tRAB .

Our intent is to study whether one kind of retweeting will influence triadic closure
formation. Figure 5.6 shows the probability of triadic closure in different cases. We
see that if the connecting node B is the first to post a tweet (case I and II), regardless
of whether others retweet the tweet or once retweeted his tweets, the retweeting
behavior has little influence on triadic closure formation. However, if user A is the
initial user who posts a tweet (case III and IV), the open triads are more likely (about
3 times as probable) to become closed.

5.3.2.4 Summary

We summarize our observations as below:

� Male users trigger triadic closure formation. The probability that three male
users form a closed triad is 6× as high as that of three female users.

� Gregarious users help form closed triads. The probability that three gregari-
ous users form a closed triad is 39× as high as that of three ordinary users.

� Celebrity users are more likely to form closed triads. Three users with high
Pagerank scores are 421× as likely to form closed triads as three ordinary
users. We also find similar patterns in the study for verified status users.

� Structural hole spanner is eager to close an open triad for more social re-
sources (> 10× higher than that of three ordinary users). On the other hand,
they are also reluctant to have two disconnected friends to be linked together.

� Interaction among users plays an important role in forming closed triads. An
open triad is 3× as likely to become closed if there is interaction among the
users in certain cases, than if there is none.

� In general, the closing action is often done by the third user (Figure 5.3(b),
Figure 5.5(c)); since the third user is the last “active” user, he or she is more
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willing than the other users to connect the link. However, if the user has some
social position, like “celebrity” or “resource holder,” then ordinary users are
more likely to connect with them (Figures 5.3(c), 5.5(a) and 5.5(b)) and close
the triad.

5.4 Triadic Closure Prediction
Based on the observations in section 5.3, we see that the closure of an open triad not
only depends on the demographics of the users involved in the triad, but is also influ-
enced by the structural position and social position of the users within the triad in the
network. Technically, the challenge in triadic closure prediction is how to integrate
all relevant information in a unified model. In this paper, we present a Triad Factor
Graph (TriadFG) model and its variations (TriadFG-BF, TriadFG-KF, TriadFG-EKF)
for triadic closure prediction. A similar model has been studied in [26] for reciprocal
relationship prediction.

5.4.1 Modeling
For a given network Gt = {V,E,X ,Y} at time t, we first extract all candidate open
triads and define features for each triad. Here we use Tr to denote candidate open
triads; X to denote features defined for candidate open triads – e.g., the demographics
of users as analyzed in Section 5.3; Y indicates whether open triads become closed
or not. With this information, we can construct a TriadFG model.

For simplicity, we remove the superscript t if there is no ambiguity. Therefore,
according to the Bayes theorem, we can get the posterior probability of P(Y |X,G) as
below:

P(Y |X,G) =
P(X,G|Y )P(Y )

P(X,G)
∝ P(X|Y ) ·P(Y |G) (5.1)

where P(Y |G) denotes the probability of labels, given the structure of the network,
and P(X|Y ) denotes the probability of generating the attributes X associated with
each triad Tr, given their label Y . Assuming that the generative probability of at-
tributes, given the label of each triad, is conditionally independent, then

P(Y |X,G)∝ P(Y |G)
∏

i

P(xi|yi) (5.2)

P(xi|yi) =
∏

j

Fj(xi j,yi), (5.3)

where P(xi|yi) is the probability of generating attributes xi given the label yi,
Fj(xi j,yi) is jth factor function defined for attribute xi.

The problem is how to instantiate the probabilities P(Y |G) and Fj(xi j,yi). In prin-
ciple, they can be instantiated in different ways. In this work, we instantiate them in
the following three ways.
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5.4.1.1 TriadFG-BF

Straightforwardly, we model these factor functions in a Markov random field, and by
the Hammersley-Clifford theorem [12], we have

FBF
j (xi j,yi) =

1
Z1

exp{α j f j(xi j,yi)} (5.4)

P(Y |G) =
1
Z2

exp{
∑

c

∑
d

µdhd(YTrc)}, (5.5)

where Z1 and Z2 are normalization factors. Eq. 5.4 indicates that we define a feature
function f j(xi j,yi) for each attribute xi j associated with each triad, where α j is the
weight of the jth attribute. Eq. 5.5 represents that we define a set of correlation feature
functions {hd(YTrc)}d over each triad Trc in the network, where µd is the weight of
the dth correlation feature function, and YTrc is correlation attribute associated with
triad Trc.

For factor functions f j(xi j,yi), and hd(YTrc), it can be defined as a binary func-
tion. For example, if three users in one triad come from the same city, then a
feature f j(xi j,yi) is specified as 1; otherwise it is 0. Note that such a feature definition
is often used in graphical models such as Conditional Random Fields [18].

We call this approach, Triad Factor Graph with Binary Function (TriadFG-BF).

5.4.1.2 TriadFG-KF

Generally speaking, the binary feature function can discriminate closed triads and
open triads. However, it cannot accurately capture correlation between features. To
this end, we propose a variant of the TriadFG model: TriadFG with Kernel Function
(TriadFG-KF). Given some attribute samples X, we want to choose feature function
F so that (X,F) is as similar as possible to the training samples. In this sense, we can
use a kernel function as a similarity measure/weighting function to estimate variable
density. Kernel methods like SVM have led to generalizations of algorithms in the
machine learning field, and to successful real-world applications [3, 37, 41]. In this
paper, we use kernel-density estimate (KDE) [38] to estimate the density functions
of samples X.

To form a kernel-density estimate, we need to place a kernel – a smooth, strongly
peaked function – at the position of each data point, then add up the contributions
from all kernels to obtain a smooth curve, which can be evaluated at any point along
the x axis. For instance, for a network structure feature, we have six open triads, and
we want to obtain some functions to see which kind of open triads are more likely
to become closed. In order to use kernel-density estimates, we need to know the
distance between the incoming samples. To this end, we define the distance metric
based on the similarity of open triads.

We set a 3×3 matrix with rows and columns labeled by vertices for every open
triad, with a 1 or a 0 in position (mi,m j), according to whether there is a link from mi
to m j. So we have the matrix representations of open triads in Figure 5.7. Hence, we
can define the similarity of triads using a Pearson’s correlation coefficient as follows:
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Definition 5.3 [Triad Similarity] Suppose triad i has matrix representation I and
triad j ’s matrix representation is J; then the similarity Sim(i, j) of triad i and triad j
is

Sim(i, j) =
∑

n(In− Ī)(Jn− J̄)√∑
n(In− Ī)2

√∑
n(Jn− J̄)2

, (5.6)

where n is the number of entries in the matrix, Ī = 1
n
∑

n In, J̄ = 1
n
∑

n Jn.

Since the distance function is required to satisfy the four conditions [36]: non-
negativity, identity of indiscernibles, symmetry, and triangle inequality, we define the
triad similarity-based distance function as follows:

Definition 5.4 [Triad Distance] Suppose the similarity between triad i and triad j
is Sim(i, j); we define the distance Dis(i, j) between these two triads as

Dis(i, j) =
√

1−Sim(i, j) (5.7)

Suppose that the region that encloses the N examples is a hypercube with sides
of length β centered at the estimation point x; then its volume is given by V = β D,
where D is the number of dimensions. We can use kernel function k(·) to find the
number of examples that fall within this region. The total number of points inside the
hypercube is then

Q =

N∑
n=1

k(
x− xn

β
) (5.8)

So the structure feature function can be rewritten as

FKF
j (xi j,yi) =

N∑
i=1

1
β

k(
x− xi j

β
), j = s; (5.9)

where k(·) is the kernel function – e.g., Gaussian kernel k(x) = 1√
(2π)

exp(− 1
2 x2),

β is the kernel bandwidth, and s represents the structure feature. The kernel-density
estimates of structure information using the Gaussian kernel is shown in Figure 5.8
(green curve), and the histogram of the distance to open triad 3 is shown in Figure 5.8
(blue part).

For other factors, we model them similarly in TriadFG-BF. Thus, we have

FKF
j (xi j,yi) =


N∑

i=1

1
β

k(
x− xi j

β
), j = s,

exp{α j f j(xi j,yi)}, j 6= s

(5.10)

We name this approach, Triad Factor Graph with Kernel Function (TriadFG-KF).
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5.4.1.3 TriadFG-EKF

With the discoveries regarding network structure, and taking TriadFG-BF into ac-
count, we can use the kernel function together with an exponential function to rewrite
Fj(xi j,yi) as follows:

FEKF
j (xi j,yi) =


exp{α j

N∑
i=1

1
β

k(
x− xi j

β
)}, j = s

exp{α j f j(xi j,yi)}, j 6= s

(5.11)

We call this approach, Triad Factor Graph with Exponential Kernel Function
(TriadFG-EKF).

Objective Function Based on the above equations, we can define the following
log-likelihood objective function O(θ) = logPθ (Y |X,G)

O =

|Tr|∑

i

{
| f e|∑

j

α jFj(xi j,yi)+
∑

c

∑

d

µdhd(YTrc)}

− logZ

, (5.12)

where Z is a normalization factor to guarantee that the result is a valid probability;
|Tr| denotes the number of candidate (open) triads in the network; | f e| is the number
of features defined for the triads (more details for feature definition are given in
Section 5.4.2); xi j is the jth feature value of the ith triad; c corresponds to a correlation
function; and Trc indicates a set of all related triads in the correlation function.

Example To provide a concrete understanding of the proposed model, we give a
simple example of TriadFG in Figure 5.9. The left part is the input network, where we
have five users and four kinds of following links among them. From the input network
we can derive six open triads – e.g., (v1,v2,v3) and (v1,v3,v4). In the prediction task,
we view each open triad as a candidate; thus we have six candidates, which are
illustrated as blue ellipses in the right-hand model. All features defined over open
triads are denoted as such – i.e., f (v1,v2,v3). In addition, we also consider social
correlation. For example, the closure of (v1,v2,v3) may imply a higher probability
that (v1,v3,v4) will also be closed at time t + 1. Given this, we build a correlation
function h(·) among related triads. Based on all the considerations, we construct the
TriadFG (as shown in Figure 5.9).

5.4.2 Feature Definitions
We now depict how we define the factor functions in our models. According to the
observations in the previous section, we define 11 features of five categories: Net-
work Structure(N), Demographics(D), Verified Status(V), Social Information(S), and
Social Interaction(I).

Network Structure According to Figure 5.4(b), we notice open triads 2, 4, 5
are more likely to be closed than others, so for TriadFG-BF, we define one feature:
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whether the open triad is of open triad 2, 4, or 5. For TriadFG-KF and TriadFG-EKF,
we use a kernel-density estimate to get the feature value.

Demographics Here we consider location and gender features. For location, we
define one feature: whether the three users come from the same place; for gender, we
define two features: whether all three users in one triad are female or male.

Verified Status We define two features for verified status: whether the connecting
user verified her status or not; other users have the opposite status (cases 010 and
101).

Social Information We consider popularity, structural hole spanning, and gre-
gariousness here. For popularity, we define one feature: whether all the three users
in the triad are popular users. For structural hole spanning, we define one feature:
whether user A and user B are structural hole spanners. For gregariousness, we de-
fine two features: whether all three users are gregarious users, and whether the three
users follow the pattern: A and C are gregarious users while user B isn’t.

Social Interaction For the problem of triadic closure prediction with interaction
information, we define one feature for social interaction: whether a retweeting action
happens among the three users in one triad.

5.4.3 Learning and Prediction
We then want to estimate a parameter configuration of the TriadFG mod-
el θ = ({α j},{µd}) that maximizes the log-likelihood objective function, θ =
argmaxO(θ). We employ a gradient descent method for model learning. The ba-
sic idea is that each parameter – e.g., µd – is assigned an initial value, and then the
gradient of each µd with regard to the objective function is derived. Finally, the pa-
rameter with learning rate η is updated. The details of the learning algorithm can be
found in [26].

With the estimated parameters θ , we can predict the labels of unknown vari-
ables yi =? by finding a label configuration that maximizes the objective function –
i.e., Y ? = argmaxO(Y |X ,G,θ). To do this, we use the learned model to calculate
the marginal distribution of each open triad with unknown variable P(yi|xi,G), and
assign each open triad a label of the maximal probability.

5.5 Experiments and Discussions
5.5.1 Experiment Setup
We use the dataset described in Section 5.3 in our experiments. To quantitatively
evaluate the effectiveness of the proposed model and the methods for comparison,
we divide the network into seven timestamp periods, by viewing every four days as a
timestamp period. For each timestamp period, we divide the network into two subsets
by using the first two-thirds of the data as a training set and the rest as a test set. Our
goal is to predict whether an open triad will become closed in the test set.
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Comparison Methods and Evaluation Measures We compare the proposed
three approaches with two alternative baselines.

SVM Uses the same attributes associated with each triad as features to train a
classification model, and then uses the classification model to predict triadic closure
in the test data.

Logistic Similar to the SVM method. The only difference is that it uses a logistic
regression model as the classification model.

TriadFG-BF Represents the proposed TriadFG model with binary feature func-
tions (Cf. § 5.4.1.1).

TriadFG-KF Represents the proposed TriadFG model with kernel feature func-
tions (Cf. § 5.4.1.2).

TriadFG-EKF Represents the proposed TriadFG model with exponential kernel
functions (Cf. § 5.4.1.3).

For SVM and Logistic, we use Weka [11]. All the TriadFG models are imple-
mented in C++, and all experiments are performed on a PC running Windows 7 with
an AMD Opteron(TM) Processor 6276(2.3GHz) and 4GB memory. We evaluate the
performance of different approaches in terms of accuracy, precision, recall, and F1-
Measure.

5.5.2 Triadic Closure Prediction
Prediction Performance We now list the performance results for different methods
in Table 5.3. It can be seen that our proposed TriadFG-BF outperforms the other t-
wo comparison methods (SVM and Logistic), and TriadFG-EKF performs the best
among all the methods. In terms of F1-Measure, TriadFG-BF achieves a +7.43% im-
provement over SVM, and +7.85% over Logistic. TriadFG-KF achieves a +6.93%
improvement over TriadFG-BF, +14.88% over SVM, and +15.32% over Logistic.
TriadFG-EKF achieves a +1.24% improvement over TriadFG-KF, +8.26% over
TriadFG-BF, +16.31% over SVM, and +16.76% over Logistic. Our proposed al-
gorithm is much better than SVM and Logistic in terms of F1-Measure. TriadFG-BF
perform slightly better than they do because it uses binary feature functions that do
not capture the similarities/correlations between different features. That is why we
propose TriadFG-KF and TriadFG-EKF, which incorporate kernels to quantity the
similarities. Meanwhile, the new proposed methods also do better on recall, which
is partly because TriadFG can detect some cases by leveraging transitive correlation
and homophily correlation.

Factor Contribution Analysis For triadic closure prediction, we examine the
contribution of four different factor functions: Network Structure(N), Demograph-
ics(D), Verified Status(V), and Social Information(S). We first rank the individual
factors by respectively each factor from our model and evaluating the decrease in
prediction performance. Thus, a larger decrease means a higher predictive power
for the removed factor. We thus rank these factors according to predictive power
as follows: Network Structure(N)> Verified Status(V)> Demographics(D)> Social
Information(S).

We then remove them one by one in reverse order of their prediction power.
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Table 5.3: Triadic closure prediction performance
Algorithm Accuracy Precision Recall F1-score
Logistic 0.7394 0.7657 0.7393 0.7316

SVM 0.7422 0.7683 0.742 0.7344
TriadFG-BF 0.7523 0.6989 0.9068 0.7890
TriadFG-KF 0.8426 0.8102 0.8613 0.8482

TriadFG-EKF 0.8444 0.8360 0.9084 0.8564

Table 5.4: Triadic closure prediction performance of each open triads
Triads Accuracy Precision Recall F1-score

0 0.5479 0.5533 0.5478 0.5335
1 0.5320 0.5472 0.5322 0.4695
2 0.5894 0.6085 0.5895 0.5797
3 0.6420 0.7058 0.6420 0.6097
4 0.5988 0.6145 0.5990 0.5823
5 0.5551 0.5562 0.5552 0.5503

We denote TriadFG-S as removing social information and TriadFG-SD as removing
demographics, finally removing verified status, denoted as TriadFG-SDV. As shown
in Figure 5.10, we can observe a slight performance decrease when ignoring social
information and demographics, which means these factors contribute significantly to
predicting triadic closure.

Prediction Performance on Triads We now consider the prediction perfor-
mance for each of the triads shown in Table 5.4. We can see that for triad 3, the
prediction performance is much better than others, while for triad 1, the performance
is the worst. This may be because triad 3, which corresponds to the case in which two
fans follow one popular user, can be trained with a large number of features in our
model, such as social information, which gives better prediction results than for other
kinds of triads. However, the closure of triad 1, which has some transitive cases, can
not be easily predicted using our features, and shows worse prediction performance
than triad 3.

5.5.3 Triadic Closure Prediction With Interaction Information
Prediction Performance Now we consider the triadic closure prediction problem
with interaction information. Here, we consider retweeting behavior as interaction
information.

Since TriadFG-EKF performs the best on problem 1, we use TriadFG-EKF here
to study this extended problem. The performance of TriadFG-EKF and TriadFG-
EKF-I (with interaction information) is shown in Table 5.5. We can see that our pro-
posed TriadFG-EKF-I outperforms TriadFG-EKF. In terms of F1-Measure, TriadFG-
EKF-I achieves a +7.55% improvement over TriadFG-EKF, which indicates that in-
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Table 5.5: Triadic Closure Prediction Performance with Interaction Information
Accuracy Precision Recall F1-score

TriadFG-EKF 0.6805 0.6834 0.7075 0.6953
TriadFG-EKF-I 0.7276 0.7149 0.7838 0.7478

teraction information, such as retweeting behavior, plays an important role. We will
further discuss how much it contributes to triadic closure prediction.

Factor Contribution Analysis In this section, we again examine the contribu-
tion of five different factor functions, especially the retweeting function: Network
Structure (N), Demographics (D), Verified Status (V), Social Information (S) and In-
teraction (I). According to predictive power of each factor, we rank these factors as
follows: Interaction (I) > Network Structure (N)> Verified Status (V)> Social Infor-
mation (S)> Demographics (D). We then remove them one by one in reverse order
of their prediction power. TriadFG-D denotes removing Demographics; TriadFG-SD
denotes removing Social Information from that set; TriadFG-SDV signifies removing
Verified Status from that; and TriadFG-SDVN denotes removing Network Structure.

As shown in Figure 5.11, we observe a slight performance decrease when ignor-
ing Social Information and Demographics, but a large performance decrease when
ignoring Network Structure – which means Network Structure information also con-
tributes a lot to the prediction of triadic closure. However, Interaction information
has the strongest predictive power here, which indicates that Interaction information
is a good feature in this microblogging service, and plays an important role in the
establishment of friendship.

5.5.4 Comparison with Twitter Observations
We compare the results with a similar study about popularity within triads on Twit-
ter [14] and find:

� Both results demonstrate the phenomenon of “the rich get richer” – i.e.,
P(1XX) > P(0XX), which validates the mechanism of preferential attach-
ment in both networks (Twitter and Weibo).

� In Twitter, popular users play an important role in forming closed triads – i.e.,
P(X1X) is about three times as high as P(X0X), while in Weibo, the result is
opposite. Possibly it is because Weibo provides more features to help users
interact with each other, and ordinary users have more chances to connect
with others. In China, Weibo is a combination of Twitter and Facebook, and
integrates the features of both. For example, for the #IceBucketChallenge,
between July 29 and August 13, about 135 thousand tweets were posted in
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Twitter6; however, in Weibo, more than 1.55 million tweets were posted be-
tween July 29 and August 207.

� The probability P(111) for popular users in Weibo is much higher than that
in Twitter. In Twitter, P(111) is twice as high as P(000); while in Weibo,
P(111) is eight times as high, which implies that popular users in China have
more closeness connections.

5.6 Related work
In terms of related work, we identify two areas: triadic closure and link prediction in
social networks. We will discuss them in detail as follows:

Triadic Closure Study There are many studies on triadic closure study. They
mainly focus on the following three aspects:

1) Network evolution/formation. One of the fundamental issues of social net-
works is to reveal the possible generic laws governing the formation/evolution of
networks. Since it is unrealistic to get global information for preferential attachment
processes to establish new social ties, the triadic closure principle, whose assump-
tion is that a node’s linking dynamics only rely on its neighbors or next neighbors
is relevant to social network formation. Klimek et al. [16] and Li et al. [22] both
declared that triadic closure could be identified as one of the fundamental dynamic
principles in social multiplex network formation/evolution. [6, 7, 19] also provided
some triadic-closure-based network generation models.

2) Network structure. Milo et al. [27] [28] defined recurring significant patterns
of interconnections as ”network motifs” and emphasized the importance of these pat-
terns, which included 6 open triads and 7 closed triads, which we use in this paper.
Romero et al. [32] studied the problem of triadic closure and developed a methodolo-
gy based on preferential attachment for studying the directed triadic closure process.
Zhang et al. [42] use triadic structures to study link diffusion process.

3) Triadic closure formation. Lou et al. [26] investigated how a reciprocal link is
developed from a parasocial relationship, and how the relationships further develop
into triadic closure, in a Twitter dataset. Zignani et al. [45] studied the triadic closure
problem on undirected networks like Facebook and Renren.

However, none of these works systematically studied triadic closure formation
and prediction in real large-scale directed networks.

Link Prediction Our work is also related to the link prediction problem, which
is one of the core tasks in social networks. Existing work on link prediction can be
broadly grouped into two categories, based on the learning methods employed: unsu-
pervised link prediction and supervised link prediction. Unsupervised link prediction
usually assigns scores to potential links based on intuition – the more similar the pair

6http://www.bostonglobe.com/business/2014/08/15/facebook-million-icebucketchallenge-videos-
posted/ 24D8bnxFlrMce5BRTixAEM/story.html

7http://media.people.com.cn/n/2014/0821/c120837-25512105.html
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of users are, the more likely they are to be linked. Various similarity measures of users
are considered, such as preferential attachment [29], and the Katz measure [15]. [24]
presented a flow-based method for link prediction. A survey of unsupervised link
prediction research can be found in [23].

There are also a number of works that employ supervised approaches to predict
links in social networks, such as [2, 20, 24]. [2] proposed a supervised random walk
algorithm to estimate the strength of social links. [20] employed a logistic regression
model to predict positive and negative links in online social networks.

However, unlike link prediction studies, we focus only on triadic closure, which
means we only focus on the last “link” that constitutes the closed triad. Moreover,
our model is dynamic and can learn from the evolution of the Weibo network. We
also combine social theories into the semi-supervised learning model.

5.7 Conclusion
In this paper, we study an important phenomenon of triadic closure formation in dy-
namic social networks. Employing a large microblogging network (Weibo) as the
source in our study, we formally define the problem and systematically study it. We
propose a probabilistic factor model for modeling and predicting whether three per-
sons in a social network will finally form a triad. Our experimental results on Weibo
show that the proposed model can more effectively predict triadic closure than alter-
native methods, in terms of F1 measurement.
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(a) Location correlation

(b) Gender correlation

(c) Verified status correlation

Figure 5.3: User Demographics. Y-axis: probability of triadic closures. The status of
the third link – the new formed link is presented in a different color; e.g., blue means
the third link is accomplished by user A, who follows user C. (a) X-axis: represents
whether certain users are from the same province; e.g., AB means that only A, B are
in the same province. NULL means users in a triad all come from different provinces.
(b) X-axis: represents genders in the triad; 0 means female and 1 means male. (c) X-
axis: represents the verified status of the triad; 0 means the user hasn’t been verified
and 1 means the user is verified.
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(a) Distribution of close triads

(b) Open triads that form triadic closure

(c) Triads evolution

Figure 5.4: Network Characteristics. (a) Y-axis: Percentage of newly formed closed
triads. (b) Y-axis: probability that each open triad becomes closed. The number by
the color bars means the index of open triads. (c) Y-axis: probability for each type
of open triad (i.e., triad 0) to change from into each type of closed triad (i.e., triad
6). Expressions attached to color bars represent the probability that an open triad
becomes a specific triadic closure; e.g., 0→ 6 represents the probability that triad 0
forms triad 6.
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(a) Popularity correlation

(b) Structural hole correlation

(c) Gregariousness correlation

Figure 5.5: Social Perspectives. Y-axis: probability that triadic closures form. The
status of a newly formed link is presented in a different color; e.g., blue represents
the fact that a third link is accomplished by user A, who follows user C. (a) X-
axis: represents the popularity of the triad. 0 represents an ordinary user and 1
represents a popular user. (b) X-axis: represents the structural hole spanner status
of the triad. 0 means an ordinary user and 1 means a structural hole spanner. (c)
X-axis: represents the gregariousness of the triad. 0 indicates an ordinary user and
1 is used for a gregarious user.
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Figure 5.6: Open triads that form triadic closures with social interaction information
in different cases. X-axis: Cases. Y-axis: probability that open triads form triadic
closures. tLAC means the time that link AC is established, and tRBC means the time that
a retweet happens between user B and C.
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Figure 5.7: Matrix representation of open triads.
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Figure 5.9: Graphical representation of the TriadFG model. There are five users
in the input network. Candidate open triads are illustrated as blue ellipses in the
bottom right. White circles indicate hidden variables yi. f (v1,v2,v3) represents the
attribute factor function, and h(.), the correlation function among triads.
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Figure 5.10: Factor contribution analysis. -S denotes ignoring social information
when we use TriadFG model, -SD denotes ignoring social information and demo-
graphics while -SDV denotes further ignoring verified status information.

Figure 5.11: Factor contribution analysis. -D denotes ignoring Demographics when
we use the TriadFG model; -SD denotes ignoring Social Information and Demo-
graphics; while -SDV denotes also ignoring Verified Status information; and -SDVN
denotes further ignoring Network sSructure information.
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Network churn: The effects of self-monitoring personality on brokerage dy-
namics. Administrative Science Quarterly, 55(4):639–670, 2010.

[36] Berthold Schweizer and Abe Sklar. Probabilistic metric spaces. Courier Dover
Publications, 2011.

[37] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[38] Larry Wasserman. All of statistics: a concise course in statistical inference.
Springer, 2004.

[39] Stanley Wasserman. Social network analysis: Methods and applications, vol-
ume 8. Cambridge University Press, 1994.

[40] Shaomei Wu, Jake M Hofman, Winter A Mason, and Duncan J Watts. Who
says what to whom on twitter. In WWW’11, pages 705–714, 2011.

[41] Ming-Hsuan Yang. Kernel eigenfaces vs. kernel fisherfaces: Face recognition
using kernel methods. In FG’02, pages 0215–0215, 2002.



32 � References

[42] Jing Zhang, Zhanpeng Fang, Wei Chen, and Jie Tang. Diffusion of following
links in microblogging networks. TKDE, 2015.

[43] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. Social influence
locality for modeling retweeting behaviors. In IJCAI’13, pages 2761–2767,
2013.

[44] Elena Zheleva, Hossam Sharara, and Lise Getoor. Co-evolution of social and
affiliation networks. In KDD’09, pages 1007–1016, 2009.

[45] Matteo Zignani, Sabrina Gaito, Gian Paolo Rossi, Xiaohan Zhao, Haitao Zheng,
and Ben Y Zhao. Link and triadic closure delay: Temporal metrics for social
network dynamics. In ICWSM’14, pages 564–573, 2014.


